Graptemys pearlensis Ennen, Lovich, Kreiser, Selman, and Qualls 2010 – Pearl River Map Turtle

Joshua R. Ennen¹, Jeffrey E. Lovich², and Robert L. Jones³

¹Tennessee Aquarium Conservation Institute, 201 Chestnut Street, Chattanooga, Tennessee 37402 USA [jre@tnaqua.org];
²Southwest Biological Science Center, U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 USA [jeffrey_lovich@usgs.gov];
³Mississippi Department of Wildlife, Fisheries, and Parks, Museum of Natural Science, 2148 Riverside Drive, Jackson, Mississippi 39202 USA [bob.jones@mmns.state.ms.us]

Summary. – The Pearl River Map Turtle, *Graptemys pearlensis* (Family Emydidae), is a moderate-sized aquatic turtle endemic to the Pearl River drainage of Louisiana and Mississippi. This taxon has long been a cryptic species, as it was considered part of *G. pulchra* before 1992 and part of *G. gibbonsi* until 2010. *Graptemys pearlensis* exhibits sexual dimorphism, with adult females being considerably larger (carapace length to 295 mm) than adult males (CL to 121 mm). In the 1960s and 1970s, the species was commonly found in higher abundance than the sympatric *G. oculifera*, a federally listed species. However, due to habitat degradation and the precipitous decline of native mollusks, the species is now found in lower numbers than *G. oculifera* throughout much of its range. The current IUCN Red List status is Endangered; however, very little is known about the natural history and ecology of the species, which will make conservation efforts challenging.

DISTRIBUTION. – USA. Restricted to the Pearl River drainage of Mississippi and Louisiana.

SYNONYMY. – *Graptemys pearlensis* Ennen, Lovich, Kreiser, Selman, and Qualls 2010.

SUBSPECIES. – None recognized.

STATUS. – IUCN 2015 Red List: Endangered (EN A1bcde+4bcde; assessed 2013); CITES: Appendix III (USA; as *Graptemys* spp.); US ESA: Not Listed.

Taxonomy. — The Pearl River Map Turtle, *Graptemys pearlensis*, was described by Ennen et al. (2010). The holotype is an adult male (Carnegie Museum 62162) from the Pearl River at State Highway 28 near Georgetown, Copiah County, Mississippi. Originally, *G. pearlensis* was recognized as part of *G. pulchra* by Baur (1893) and subsequent authors until Lovich and McCoy (1992) described *G. gibbonsi*, which also included what is now recognized as *G. pearlensis*. Later, Ennen et al. (2010) split *G. gibbonsi* (*sensu lato*), restricting *G. pearlensis* to the Pearl River and *G. gibbonsi* (*sensu stricto*) to the Pascagoula River. *Graptemys pearlensis* is one of the five species within the *pulchra* clade, which

Figure 1. Adult male *Graptemys pearlensis* from the Tennessee Aquarium collection. The unbroken black stripe on the median dorsal keel of *G. pearlensis* is a distinguishing characteristic. Photo by Joshua Ennen.
includes *G. pulchra* (*sensu stricto*), *G. ernsti*, *G. barbouri*, and *G. gibbonsi* (*sensu stricto*). Additional information on the taxonomic history of *G. pearlensis* can be found in Ennen et al. (2012). All five species can be differentiated on the basis of morphology and pigmentation patterns and they exhibit mtDNA divergence (Lovich and McCoy 1992; Lamb et al. 1994; Ernst and Lovich 2009; Ennen et al. 2010).

Description. — The Pearl River Map Turtle is a moderate-sized, highly aquatic freshwater turtle with carapace lengths reaching 295 mm and 121 mm for females and males, respectively. *Graptemys pearlensis*, similar to other species within the *pulchra* clade, possesses a high-domed shell with a median keel, which has salient spines on the posterior portions of the anterior vertebral scutes; the spines are considerably smaller than those of the sympatric *G. oculifera* (Ringed Sawback).

The background color of the carapace is olive green and vermiculations and circular yellow pigmentation are present on the distal portions of pleural scutes 1–3. The hingeless plastron is relatively flat and is pale yellow with some dark pigmentation along the seams (Fig. 2). The ground color of soft tissue is usually olive to black with yellow or yellowish-green stripe patterns. *Graptemys pearlensis*, similar to *G. gibbonsi*, does not possess supraoccipital spots or anteriorly expanded dorsal paramedian neck stripes (Fig. 3). Another similarity between these two species is a large interorbital blotch connected to the large postorbital blotches on the head. *Graptemys pearlensis* is highly sexually dimorphic (Gibbons and Lovich 1990), where adult females are larger and possess conspicuously enlarged heads compared to adult males (Fig. 4). The species within the *pulchra* clade differ based on several pigmentation features. A connection between the interorbital and postorbital blotches is found in *G. pulchra*, *G. gibbonsi*, and *G. pearlensis*. A nasal trident is found in *G. ernsti*, *G. gibbonsi*, and *G. pearlensis*, but less frequently in *G. gibbonsi*. Supraoccipital spots are usually present in *G. ernsti* but are absent in all other species. Unique to *G. barbouri* are a narrow interorbital blotch that ends anteriorly in a narrow

![Figure 2. Plastron patterns of two male *Graptemys pearlensis* from the Pearl River near Monticello, Mississippi, USA. Photo by Robert Jones.](image-url)

![Figure 3. Head pattern of a male *Graptemys pearlensis* from the Pearl River near Monticello, Mississippi, USA. Photo by Robert Jones.](image-url)
Graptemys pearlensis

Emydidae — Graptemys pearlensis

— Creeks including the Strong River (Lindeman 2008), as well as Pushepatapa (Carr and Messinger 2002) and Lobutcha creeks (MMNS 15516). The questionable record from the Tickfaw River, reported by Dundee and Rossman (1989) was discussed further by Lovich and McCoy (1992).

Habitat and Ecology. — In general, a paucity of information is available regarding the natural history and ecology of the *pulchra* clade (Ennen et al. 2012; Lovich and Ennen 2013). Of the 58 recognized turtle species in the United States, the best-studied species in the *pulchra* clade is *G. barbouri*, which ranks 37th overall (Lovich and Ennen 2013). Their analysis did not differentiate between *G. pearlensis* and *G. gibbonsi* due to the lack of publications on the former as a result of its recent description as a separate taxon (*sensu lato*).

Graptemys gibbonsi (*sensu lato*) was ranked 46th. *Graptemys pearlensis* is most abundant in large to medium-sized rivers/creeks, where basking sites (logs and snags; Lindeman 1999), nesting sites (sand bars), and food species (i.e., bivalves and gastropods) are common features of the habitat.

Graptemys pearlensis is a carnivorous species and exhibits a broader diet than *G. gibbonsi* (McCoy and Vogt, unpubl. data). Females and males likely exhibit different dietary preferences due to sexual dimorphism (Gibbons and Lovich 1990; Lindeman 2000). Females possess larger heads and alveolar widths and probably consume more mollusks, while males and smaller females are largely insectivores. Cagle (1952) reported stomach contents of two males, which consisted of only insect remains, while a juvenile female stomach included mollusks (clams and snails). Not separating males and females or standardizing for size, McCoy and Vogt (unpubl. data) found *G. pearlensis* consumed mostly scavenged fish (44%) and equal portions by volume of insects and mollusks (25%) in stomach contents. Detailed

Figure 4. *Graptemys pearlensis* displays sexual dimorphism between males (left) and females (right). Both individuals were captured in the Pearl River near Monticello, Mississippi, USA. Photo by Robert Jones.

Figure 5. A yearling *Graptemys pearlensis* from the Pearl River, upstream of Monticello, Lawrence County, Mississippi. Photo by Robert Jones.
dietary studies on contemporary populations are needed to further delineate the diet of *G. pearlensis*.

Turtles of the genus *Graptemys* are predominately diurnal. Although no data are available on adult movements or basking for *G. pearlensis*, the species is presumed to be diurnal, and basking behavior is likely similar to that of *G. ernsti* (Shealy 1976) and *G. gibbonsi* (Selman and Qualls 2007). For *G. gibbonsi*, preliminary data indicate that basking peaks at midday and in late afternoon, probably associated with abiotic temperatures (water and ambient), which appeared to overlap with the preferred basking period of *G. flavimaculata* (Lovich et al. 2009; Selman and Qualls 2007). At night, *G. pearlensis* is relatively inactive and clings to submerged snags and deadwood just below the surface (Chaney and Smith 1950). Anderson (1958) conducted a study on movement behavior of hatchling *G. pearlensis* with regards to photic response and water-approach behavior.

McCoy and Vogt (unpubl. data) observed gravid females from May to August in 1978 and 1979. Eggs are deposited in nest cavities constructed on sandbars above the water line, and average clutch size was 6.4, which was smaller than reported in *G. gibbonsi*. Although not directly observed, females are presumed to produce multiple clutches in a given reproductive season. Upon dissection of a gravid female with 3 eggs, the specimen possessed 6 enlarged ovocytes suggestive of multiple clutches within the species. Cagle (1952) captured a gravid female with a plastron length of 170 mm, which is similar to the smallest gravid *G. gibbonsi* female (179 mm PL, Lovich et al. 2009). Males attain sexual maturity at smaller sizes than females, around a plastron length of 89 mm, (Cagle 1952). Egg width and length ranged from 25.0-27.0 mm and 46.0-47.3 mm, respectively.

More recently, data on reproduction in *G. pearlensis* were collected incidentally during a study of reproduction in *G. oculifera* on the Pearl River in Mississippi (Jones 2006). Three fresh nests were found on 6, 13, and 21 June on sandbars. The nests had been dug in relatively fine sand and were located from less than 7 to over 55 m from the edge of the river. The nests averaged 1.6 m from the closest vegetation, and the average depth to the bottom of the nest cavities was 16.3 cm. The average size of five deposited clutches was 6.4 and ranged from 4–9 eggs. Average length, width, and mass of 33 eggs were 40.1±1.8 mm, 26.8±0.5 mm, and 16.4±1.2 gm, respectively. Five eggs incubated in the lab pipped an average of 62.8 days after deposition, and three clutches incubated in natural nests each pipped in 62 days. Emergence from the nest cavity for the three field clutches occurred on average in 69.3 days and ranged from 67–79 days. The five lab-reared *G. pearlensis* hatchlings averaged 36.6±1.0 mm, 31.2±1.3 mm, 32.8±1.5 mm, and 11.3±1.0 gm for carapace length, midline plastron length, total plastron length, and mass, respectively.

Little information is available on the growth rates of *G. pearlensis*. Cagle (1952) reported one hatchling that grew
Emydidae — *Graptemys pearlensis*

—

Graptemys pearlensis

094.5

In the Pearl and Bogue Chitto rivers. In a later study of a Pearl River population, Cagle (1953) reported *G. pearlensis* (105 individuals) was 2.1 times more abundant than *G. oculifera* (51 individuals), where turtles were hand captured at night over an undisclosed time period. Likewise, Tinkle (1958) found *G. pearlensis* (57 individuals) 1.9 times more abundant than *G. oculifera* (30 individuals).

By the 1990s, basking densities of *G. pearlensis* were lower than those of *G. oculifera*, a federally listed species (Dickerson and Reine 1996; Lindeman 1998, 1999; Shively 1999). Unlike previous trapping studies (i.e., Cagle 1952, 1953; Tinkle 1958), basking *G. oculifera* outnumbered basking *G. pearlensis* at all surveyed sites, particularly within the Upper and Lower Pearl River (28.6 to 1) and West Pearl River (4.1 to 1; Lindeman 1998, 1999). Similarly, Dickerson and Reine (1996) found *G. pearlensis* at lower densities than *G. oculifera* at two east Pearl River sites in Mississippi (125 *G. pearlensis*: 2501 *G. oculifera*); Dickerson and Reine’s (1996) results were not unexpected as other authors have reported lower numbers of broad headed map turtle species in downstream regions relative to upstream regions (Selman and Qualls 2009; Lindeman 2013). In a survey that covered over 4.2 km of Pearl River shoreline, *G. oculifera* was the predominant basking species with 75.2% of the observations compared to 7.8% for *G. pearlensis* (Lindeman 1999). This same trend of *G. oculifera* outnumbering *G. pearlensis* was also reported within the Bogue Chitto River by Shively (1999) who reported fewer *G. pearlensis* (22% of basking turtles) in comparison to *G. oculifera* (30%); likewise, *G. pearlensis* was more abundant than *G. oculifera* in 38.4% of river bends examined. Historical population trends demonstrated that *G. pearlensis* was almost twice as abundant as *G. oculifera* in the 1950s and 1960s, but by the 1970s, *G. pearlensis* was less common in comparison to *G. oculifera* and the trend continued into the 1980s and 1990s (Lindeman 1999).

Trapping data within the Pearl River also indicate that *G. pearlensis* population levels are lower than *G. oculifera* (Jones and Hartfield 1990; Selman and Qualls 2007). Using trapping data from Jones and Hartfield’s (1990) earlier work, Selman and Qualls (2007) compared population densities of *G. pearlensis* over a 16-year period. *Graptemys pearlensis* was observed in higher numbers relative to *G. oculifera* in 1990 (1:1.15) compared to 2005–06 (1:5.39–6.34). Numbers of trapped *G. pearlensis* also declined, while *G. oculifera* numbers remained relatively stable.

Five sites on the Pearl River in Mississippi (Jones and Hartfield 1990) have been monitored periodically using basking traps since the late 1980s for *G. oculifera* and incidentally for *G. pearlensis*. In the late 1980s, average catch of *G. pearlensis* ranged from 1.8/day at Ratliff Ferry in the upper Pearl River basin to 9.6/day near Columbia in the

Figure 7. Habitats of *Graptemys pearlensis* in the Pearl River, Mississippi. *Top:* Type locality near Georgetown, Copiah County. This site is typical habitat with a wooded riparian zone and ample basking sites. *Middle:* Upper portion of the Pearl River near Carthage, Leake County; the species is found in relatively high densities at this site. *Bottom:* Upstream of Columbia, Marion County; sandbars provide nesting habitat and the gravel bar provides foraging opportunities, as it has a relatively dense population of freshwater mussels. Photos by Robert Jones.

36.6 mm over a two-year period, growing 19.7 mm in the first season and 16.9 mm in the second.

Population Status. — In the 1950s, *G. pearlensis* appeared to be more abundant in the Pearl River (98 individuals) than Bogue Chitto River (12 individuals; Cagle 1952), where turtles were hand captured over an undisclosed time period. The Pearl River sample was skewed towards juveniles (75 individuals), and the sex ratio was approximately 1:1. Additionally, several studies reported that *G. pearlensis* was more abundant than the sympatric *G. oculifera* (Cagle 1952, 1953; Tinkle 1958). Cagle (1952) reported *G. pearlensis* (110 individuals) was 1.9 times more abundant than *G. oculifera* (58 individuals) in the Pearl and Bogue Chitto rivers. In a later study of a Pearl River population, Cagle (1953) reported *G. pearlensis* (105 individuals) was 2.1 times more abundant than *G. oculifera* (51 individuals), where turtles were hand captured at night over an undisclosed time period. Likewise, Tinkle (1958) found *G. pearlensis* (57 individuals) 1.9 times more abundant than *G. oculifera* (30 individuals).

By the 1990s, basking densities of *G. pearlensis* were lower than those of *G. oculifera*, a federally listed species (Dickerson and Reine 1996; Lindeman 1998, 1999; Shively 1999). Unlike previous trapping studies (i.e., Cagle 1952, 1953; Tinkle 1958), basking *G. oculifera* outnumbered basking *G. pearlensis* at all surveyed sites, particularly within the Upper and Lower Pearl River (28.6 to 1) and West Pearl River (4.1 to 1; Lindeman 1998, 1999). Similarly, Dickerson and Reine (1996) found *G. pearlensis* at lower densities than *G. oculifera* at two east Pearl River sites in Mississippi (125 *G. pearlensis*: 2501 *G. oculifera*); Dickerson and Reine’s (1996) results were not unexpected as other authors have reported lower numbers of broad headed map turtle species in downstream regions relative to upstream regions (Selman and Qualls 2009; Lindeman 2013). In a survey that covered over 4.2 km of Pearl River shoreline, *G. oculifera* was the predominant basking species with 75.2% of the observations compared to 7.8% for *G. pearlensis* (Lindeman 1999). This same trend of *G. oculifera* outnumbering *G. pearlensis* was also reported within the Bogue Chitto River by Shively (1999) who reported fewer *G. pearlensis* (22% of basking turtles) in comparison to *G. oculifera* (30%); likewise, *G. pearlensis* was more abundant than *G. oculifera* in 38.4% of river bends examined. Historical population trends demonstrated that *G. pearlensis* was almost twice as abundant as *G. oculifera* in the 1950s and 1960s, but by the 1970s, *G. pearlensis* was less common in comparison to *G. oculifera* and the trend continued into the 1980s and 1990s (Lindeman 1999).

Trapping data within the Pearl River also indicate that *G. pearlensis* population levels are lower than *G. oculifera* (Jones and Hartfield 1990; Selman and Qualls 2007). Using trapping data from Jones and Hartfield’s (1990) earlier work, Selman and Qualls (2007) compared population densities of *G. pearlensis* over a 16-year period. *Graptemys pearlensis* was observed in higher numbers relative to *G. oculifera* in 1990 (1:1.15) compared to 2005–06 (1:5.39–6.34). Numbers of trapped *G. pearlensis* also declined, while *G. oculifera* numbers remained relatively stable.

Five sites on the Pearl River in Mississippi (Jones and Hartfield 1990) have been monitored periodically using basking traps since the late 1980s for *G. oculifera* and incidentally for *G. pearlensis*. In the late 1980s, average catch of *G. pearlensis* ranged from 1.8/day at Ratliff Ferry in the upper Pearl River basin to 9.6/day near Columbia in the
lower part of the basin. In the mid-1990s, the catch of *G. pearlensis* had declined to 0.8 per day at Ratliff Ferry but remained relatively stable at Columbia at 9.7/day. Trapping between 2000 and 2010 indicated that numbers remained at a low level at Ratliff Ferry (1/day) but declined to 5/day at Columbia. At the three other sites, numbers of *G. pearlensis* trapped per day have shown a similar decline at two of the sites and have remained relatively stable at only one, the most upriver site near Carthage. Another round of trapping was initiated in 2013, and preliminary data indicate that the decline at Ratliff Ferry and at another site just below Ross Barnett Reservoir is continuing.

Threats to Survival. — Habitat loss and degradation is a leading cause of population decline for many turtle species. Because of the unique life history traits of long-lived species, most turtles are highly sensitive to slight perturbations that impact adult and sub-adult age classes (Congdon et al. 1993, 1994). This can include the removal of logs or snags, channelization, or impoundment, which eliminates habitat elements (basking and nesting sites) that are essential for survival (Lindeman 1999). In the Pearl River watershed, habitat loss and degradation have been caused by contaminants from urban and industrial sources, gravel mining in the Bogue Chitto and lower Pearl rivers (Shively 1999), and the modification of the downstream natural flow regime and its associated habitat changes caused by construction of the Ross Barnett Reservoir near Jackson. An additional impoundment just downstream of Ross Barnett Reservoir is currently in the planning stage, and construction of this new reservoir would further impact downstream flow regimes as well as *G. pearlensis* within the project boundary. Sedimentation and other anthropogenic alterations within the Pearl River drainage may have also adversely impacted the native mussel and gastropod populations (Jones et al. 2005), thus decreasing a significant prey source for female *G. pearlensis*.

This species is susceptible to other anthropogenic impacts such as overexploitation and nest depredation by subsidized mesopredators. For example, *G. gibbonsi* (*sensu lato*) was found in Asian markets (Cheung and Dudgeon 2006) suggesting that exploitation may be international in scope. Selman and Qualls (2007) provided evidence that hundreds of *G. pearlensis* were collected for the pet trade by one person in 2006. Humans and alligators (*Alligator mississippiensis*) are the only significant predators of adult *G. pearlensis*, and shooting basking turtles may cause population reduction in local areas (Marion 1986). Eggs and hatchlings are the most vulnerable stages within a turtle’s life, and the presumed predators of nests and hatchlings are likely to be very similar to those of *G. gibbonsi* (Lovich et al. 2009) and other turtle species in southeastern United States.

Conservation Measures Taken. — The Pearl River Map Turtle is listed as a Species in Need of Management by the State of Mississippi. No commercial take of this species is allowed, take for personal use is limited to four individuals, and total possession limit is four. This species has no specific regulatory status in Louisiana (Will Selman, pers. comm.). The IUCN Red List designation is Endangered (van Dijk, 2013). This species is listed by CITES under Appendix III for the USA, covering all *Graptemys* species (www.cites.org/eng/resources/species.html). *Graptemys pearlensis* co-occurs with *G. oculifera* over much of the latter’s range, and any conservation measures implemented for *G. oculifera* will likely benefit *G. pearlensis* as well.

The Pearl River Map Turtle is found in several state managed areas in both Mississippi (Nanib Waiya Wildlife Management Area [WMA], Neshoba County; Pearl River WMA, Madison County; and Old River WMA, Pearl River County) and Louisiana (Pearl River WMA, St. Tammany Parish) and in the federal Bogue Chitto National Wildlife Refuge (St. Tammany Parish, Louisiana and Pearl River County, Mississippi). These areas all border the Pearl River, but no specific management for *G. pearlensis* occurs within any of them.

Conservation Measures Proposed. — Given the apparent decline of this species, status surveys should be conducted in the Pearl River watershed of both Mississippi and Louisiana with emphasis on determining the relative densities of *G. pearlensis* in the main stems of the Pearl and Bogue Chitto rivers. These surveys should focus on the extent to which *G. pearlensis* occupies smaller river and tributaries of the Pearl and Bogue Chitto rivers in both states. Due to the paucity of published data on the species (as reported by Lovich and Ennen 2013), future research should be conducted on *G. pearlensis* reproductive biology, movements, basking activity, food habits, and longevity. Special emphasis should be directed at understanding the relationship between bivalve and gastropod densities and distribution and the dietary preferences of *G. pearlensis*, particularly of adult females.

Captive Husbandry. — *Graptemys pearlensis* has been successfully maintained in captivity in the aquariums of the Mississippi Museum of Natural Science for several years, although captive propagation of this species has not been attempted. No special facilities nor diet other than what is used for most captive emydids have been employed. It should be noted that many of the *Graptemys* referred to as *G. gibbonsi* in the pet trade are likely *G. pearlensis* (Selman and Qualls 2007). *Graptemys gibbonsi* (*sensu stricto*) is endemic to the Pascagoula watershed in Mississippi and commercial take of that species has never been permitted. Louisiana had no restrictions on the capture and trade of *G. gibbonsi* (*sensu lato*), so the *Graptemys* captured and sold from that state were actually *G. pearlensis*. There remains some confusion about the identity of many specimens sold as *G. gibbonsi* (*sensu lato*) in Germany (Beate Pfau, pers.
current, but if they are G. pearlensis, then captive propagation has successfully occurred in several breeding facilities in both Europe and the United States.

Current Research. — Current research is limited to population status and distribution studies (Edmund Keiser, unpubl. data; Lindeman, unpubl. data; Landry and Gregory, unpubl. data). Robert Jones has been conducting long-term population-level studies on G. oculifera since the early 1990s at several sites within the Pearl River drainage, but only has collected data on G. pearlensis incidental to G. oculifera (Jones, unpubl. data). Future research should focus on filling our knowledge gap on reproductive ecology, diet, movement ecology, longevity, and population genetics.

Acknowledgments. — We would like to thank the Tennessee Aquarium Conservation Institute and the Mississippi Department of Wildlife, Fisheries, and Parks for their support.

LITERATURE CITED

Citation Format for this Account: